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Abstract. Using the fractal theory of motion in the form of the Scale 

Relativity Theory in an arbitrary and constant fractal dimension, a fractal 

radioactive decay law and a fractal tunneling effect in complex systems at 

nuclear scale with spontaneous symmetry breaking properties are obtained. 
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1. Introduction 

 

The notion of “complex system” is nowadays one of the inherent 

concept of modern science. It has long spread to a wider scale, having 

implications in sociological or cultural areas. A strict definition for this notion is 

hard to establishing, mainly due to the discovery or recognition of wider ranges 

of phenomena where it can be applied (Holovatch et al., 2017). Sometimes 

“complex system” refers to any system consisting of many interconnected parts 

which, as a whole, possesses properties that are not trivial aggregates of the 

properties of its separate parts (Sherington, 2010). This represents a 

fundamental characteristic of self-organisation and of the appearance of new 
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properties (consciousness, just to give an example) often called emergence. A 

reference work for the collective effects of complex systems is the one written 

by Phillip Anderson (Anderson, 1972), a Nobel Prize Laureate in physics. The 

science of complex systems tries to establish the ways in which the constituent 

parts (or structural entities) give rise to the emerging collective behaviour of a 

whole system. But this interpretation is of limited use for physicists, because it 

encompasses too broad a set of circumstances.  

However, some time ago a more useful definition has emerged: a 

system is complex if its behaviour essentially depends on its details (Parisi, 

1999). Thus, this definition can be applied to phenomena such as deterministic 

chaos, quantum entanglement, protein folding etc. Structural disorder can 

influence the collective complex behaviour. Thus, an equilibrium state is 

difficult to reach and responses to external perturbations are slow and usually 

random (Parisi, 1999; Goldenfeld and Kadanoff, 1999). These different 

phenomenas are studied in different fields of physics such as dynamical 

systems, quantum mechanics and statistical physics. Their common property is 

that very small (infinitesimal) changes in initial conditions (even if different in 

nature) lead to radically different scenarios in their time evolution.  

We must note now another important feature of complex systems: the 

macrostate and microstates dynamically update each other. This is due to the 

fact that, on the one hand, interactions between constituent parts lead to 

collective behaviour and define the macrostate but, on the other hand, the 

interactions are modified during the system’s evolution and are influenced by 

the macrostate.  

We must also take into consideration that the notion of complex 

systems implies that the interactions between constituents are time varying, and 

many different interaction types can be present at the same time. Interactions 

between structural entities can be very specific. These interactions change the 

states of the structural entities. Thus, we can say that the essence of many 

complex systems is that the states of their entities and interactions co-evolve 

over time (Holovatch et al., 2017). The science of complex systems is therefore 

the generalisation of physics to forces and matter of a broader concept. Forces 

can be anything that change states of constituents, matter is anything where a 

force can be applied (Holovatch et al., 2017).  

In this paper we propose some applications of the fractal theory of 

motion in the form of the Scale Relativity Theory in an arbitrary and constant 

fractal dimension for complex systems at nuclear scale. 

 
2. Fractal-Type Radioactive Decay Law 

 

Let us analyze Schrödinger’s fractal equation in its stationary form 

(Nottale, 2011; Mercheș and Agop, 2016).  
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  4 22

02 FDm dt U E   


        (1) 

 

where 0m  is the rest mass of the particle,   is a coefficient associated to the 

fractal-non-fractal transition, dt  is the scale resolution, 
FD  is the fractal 

dimension of the particle’s motion curve,   is the fractal state function, U is 

the external scalar potential and E is the particle’s energy. 

In the case of a radial symmetry,  r  , because Laplace’s operator 

has the expression: 
 

 
2

2

1 d
r

r dr
       (2) 

 

in the form 
 

   r r r        (3) 
 

The Schrödinger’s fractal Eq. (1) becomes: 
 

    
     

2
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0 2
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d r
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In these conditions, the fractal probability current: 
 

    2 1

2

1
FD

d d
j r i dt

r dr dr

 
  

  
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 
                (5) 

 

where   is the complex conjugate of  , induces through the surface of a 

sphere of radius r the total fractal probability current,  J r , 
 

      2 124π 4π FD
d d

J r r j r i dt
dr dr

 
  

  
   

 
            (6) 

 

Let us now consider a spherical volume enclosed by a sphere of radius 

0r . The fractal probability current integral   , where   is the complex 

conjugate of  , inside this volume is given by (Popescu, 2006): 
 

   
0 0

2

0 0

4π 4π

r r

P r dr dr        (7) 

 

Because the fractal probability conservation law imposes the relation 
 

   0 0 ,P J r J         (8) 
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then through (7) we will have: 
 

              
0

0
2 1

0 0

0

4π 4π 0F

r

rD
d d

dr i dt J r J
dr dr

 
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     (9) 

 

The current  0J  at 0r   can be null if there are no particles in the 

origin or sources. For example, in the absence of such a source, the following 

alternatives are possible (Gamov, 1928; Roy, 1986): i) temporal independence, 

situation in which the total fractal probability current  0J r  is null for any 0r ; 

ii) temporal dependence, situation in which the total fractal probability current 

 0 0J r   varies in with time so that   can be integrated from 0r   to 0r r . 

The second alternative can be used to describe dynamics involved in particle 

emission by nuclei (Fig. 1). 

 

 
Fig. 1 ‒  U U r  dependency in particle emission by nuclei. 

 

The fractal functions amplitudes for zones 1 and 3 are obtained by 

standard means using Schrödinger’s fractal equation in its stationary form. We 

get 

     1 1 1 0 1 0exp exp( )r r r A ik r B ik r        (10) 

for zone 1, and 

     3 3 3 expr r r A ikr      (11) 

 

for zone 3 respectively. 

zone zone zone 
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Because the transmission coefficient, T, for all particle emitting nuclei 

is very low, then 
1 1A B . In these circumstances, Eq. (7) becomes: 

 

   2

1

0

4 4π 2

R

P dr A R          (12) 

 

where R defines here the nucleus radius.  

Now the total fractal probability current outside the nuclear barrier 

becomes: 

    
2 2 21

3 3 3 34π 2 4πFDJ i dt A ik v A


              (13) 

with 

  2 1

3 2 FDv dt k


      (14) 

 

the velocity in zone 3. Taking into account the conservation law (8) we will 

have: 

2 2

1 3 32
d

R A v A
d

       (15) 

 

from where, by multiplying both terms of the above relation with 
2

11 A , it 

results: 
2 2

1 33

2 2

1 1
2

d A Av
d

RA A
       (16) 

 

Since the fractal probability of a particle existing inside a nucleus is 

proportional with 
2

1A , Eq. (16) leads us to the fractal probability variation with 

time P written as 
2

33

2

1
2

AvdP
d d

P R A
              (17) 

i.e. 

     0 expP t P         (18) 

with 

  22 21

3 33

2 2

1 1

2
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



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the fractal disintegration constant. Therefore, relation (18) expresses the fractal-

type radioactive decay law.  
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Relation (19) can be written in another way by introducing the barrier 

penetration coefficient T. For a rectangular barrier with different potential levels 

on the two sides, the penetration coefficient is given by: 
 

2

33

2

1 1

Av
T

v A
      (20) 

 

By substituting (20) in (19) we get: 
 

1

2

v
T

R
       (21) 

 

Since both 1v  and T are functionally dependent of the fractalization 

degree   2 1
FDG dt


 , i.e.  1 1v v G  and  1 1T T G , it results that the decay 

constant is dependent on the scale resolution.  

 
3. Fractal Tunneling Effect in Physical Systems with 

Spontaneous Symmetry Breaking 

 

In the fractal theory of physical systems with spontaneous symmetry 

breaking, because of the shape of the potential, Schrödinger’s stationary fractal 

equation cannot be integrated precisely. Determining the fractal state functions 

and eigenvalues can only be made through successive approximations, in the 

framework of a possible fractal theory of stationary perturbations. In order to 

circumvent the mathematical difficulties generated by employing such a 

method, we will admit a simplifying hypothesis of the effective potential, as 

shown in Fig. 2.  

 
Fig. 2 ‒ The effective potential for the case of a fractal tunneling effect 

 for physical systems with spontaneous symmetry breaking. 
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So, let us admit that the potential for the spontaneous symmetry 

breaking case can be approximated to an effective potential, as shown in Fig. 2. 

In these conditions, Schrödinger’s stationary fractal equation becomes 

(Dariescu et al., 2007): 
 

  
 

2

2 4 22

0
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2 FD

a
E V

dz
m dt
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            (22) 

 

For each of the three regions the solutions of the equations are 

(Dariescu et al., 2007): 
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    (23) 

with 
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and ,  ,  ,  ,  ,  C C B C D D     integration constants. 

Due to the infinite potential in the two extreme regions, z l , the 

fractal state function continuity in z l   implies: 
 

 
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2

3

0

0

ikl ikl
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Since the states density 
2

  is not altered by the multiplication of the 

fractal state function by a constant phase factor, the two equations for C  and 

D  can be immediately solved by imposing the mensuration: 
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2 2
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so that 1,3  are given through simple expressions: 
 

   

   

1

3

sin

sin

z A k z l
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


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These, along with 2 , lead to the concrete form of “alignment 

conditions” in z d   
 

       
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namely 
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Due to the algebraic form of the two equation pairs, in order to establish 

the concrete expression of the “secular equation” (for eigenvalues E of the 

energy),   0E  , we avoid calculating the 4
th
 order determinant, 

   ,k E q E   , formed with the fractal amplitude coefficients A, B, C, D, by 

employing the following: we note with   the relation C/B and we divide the 

first equation to the second one, for each pair. It results: 
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which leads to the equation for  :  
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We find 
2 1   which implies 

 

1,  1           (32) 
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For 1  , the amplitude function,     2 cothz qz  , is symmetric 

just as the fractal states of the system with regard to the (spatial) reflectivity 

against the origin. Then the permitted values equation of the energy of these 

states, SE , has the concrete form: 
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For 1   , the amplitude function,     2 tanhz qz  , so that the 

states will be antisymmetric and permitted values equation, AE , becomes: 
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It results, for now, at least qualitatively, that the presence of the barrier 

(of finite height V0) between -d and d, leads to the splitting of the fundamental 

level 0E  into two sublevels ,  S AE E  accounting for the two types of states – 

symmetric and antisymmetric, respectively, in which the system can be found. 

Because both eigenvalues equations are strongly transcendent, a direct 

estimation of solutions ,S AE  could be possible only by means of numerical 

methods. More precisely, we can see here a process of coupling between two 

different fractal states, made possible through a fractal tunneling effect. 
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4. Conclusions 

 

In the fractal theory of motion in the form of the Scale Relativity 

Theory in an arbitrary and constant fractal dimension for complex systems at 

nuclear scale, some particular dynamics are analyzed. In this context, we obtain 

the expressions for a fractal radioactive decay law and also for a fractal 

tunneling effect, for complex systems with spontaneous symmetry breaking 

properties. These results can be applied to various technological fields, such as 

nanorobotics and nanomaterials engineering (Agape et al., 2016; Agape et al., 

2017; Gaiginschi and Agape, 2016; Gaiginschi et al., 2011; Gaiginschi et al., 

2014a; Gaiginschi et al., 2014b; Gaiginschi et al., 2017; Vornicu et al., 2017). 
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EFECTE DE TIP FRACTAL ÎN SISTEME COMPLEXE 

 LA SCARĂ NUCLEARĂ 

 

(Rezumat) 

 

Utilizând teoria fractală a mișcării sub forma Teoriei Relativității de Scală în 

dimensiune constantă și arbitrară se obține legea de dezintegrare radioactivă fractală și 

efectul tunel fractal în sisteme complexe cu rupere spontană de simetrie.    
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